

Общероссийский математический портал

В. И. Гаврилов, П. В. Довбуш, Граничные особенности, порождаемые предельными множествами функций нескольких комплексных переменных, $Докл. \ AH\ CCCP$, 1982, том 265, номер 5, 1047–1050

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.168.59.111

11. 170.100.03.111

2 декабря 2021 г., 10:26:59

В.И. ГАВРИЛОВ, П.В. ДОВБУШ

ГРАНИЧНЫЕ ОСОБЕННОСТИ, ПОРОЖДАЕМЫЕ ПРЕДЕЛЬНЫМИ МНОЖЕСТВАМИ ФУНКЦИЙ НЕСКОЛЬКИХ КОМПЛЕКСНЫХ ПЕРЕМЕННЫХ

(Представлено академиком А.Н. Тихоновым 2 XII 1981)

В статье [1] предложен дедуктивный подход к изучению граничных особенностей мероморфных функций одного комплексного переменного, исходя из свойств предельных множеств произвольных комплекснозначных функций. Носителем свойства аналитичности (мероморфности) оказалось понятие P-последовательности, введенное и изученное для мероморфных функций ранее (см., например, [2]). Этот подход получил дальнейшее развитие в [3–5] и в работах других авторов. В статьях [6, 7] понятие P-последовательности и ее свойства перенесены на случай голоморфных функций нескольких комплексных переменных и использованы, в частности, в изучении асимптотических свойств нормальных голоморфных функций нескольких комплексных переменных. Цель настоящей статьи — показать, что упомянутый выше подход может быть применим и в многомерном случае в изучении предельных множеств голоморфных функций.

1. Пусть B — единичный шар $B = \{z \in \mathbb{C}^n; |z| < 1\}$ в пространстве \mathbb{C}^n , n > 1, и ds — метрика Бергмана в B. Расстояние $\rho(z, w)$ (в метрике Бергмана)

между точками z и w шара B определяется формулой $\rho(z, w) = \inf \int\limits_{0}^{\infty} \left[ds(\gamma(t)) \right]^{1/2} dt$,

в которой inf берется по всем кусочно-гладким кривым $\gamma\colon [0,1]\to B$, $\gamma(0)=z$, $\gamma(1)=w$. Пусть $B_\epsilon(z)=\{w\in B;\ \rho(z,w)<\epsilon\}$ для произвольной точки $z\in B$ и числа $\epsilon>0$. Для произвольной хорды h_ξ шара B, оканчивающейся в граничной точке $\xi,\ \xi\in\partial B$, положим

$$A_{\epsilon}(h_{\xi}) = \bigcup_{z \in h_{\xi}} B_{\epsilon}(z).$$

мыкание множества.

Рассмотрим произвольную функцию $f\colon B\to\Omega$ из шара B в сферу Римана Ω , произвольное множество $S\subset B$, для которого точка $\xi\in\partial B$ является предельной точкой, и обозначим через $C(f,\ \xi,\ S)$ предельное множество функции f в точке ξ относительно множества S; т.е. обозначим через $C(f,\ \xi,\ S)$ совокупность таких точек $a\in\Omega$, что $a=\lim_{n\to\infty} f(z_m^{(a)})$ по некоторой последовательности

точек $z_m^{(a)} \in S$, $m=1,\ 2,\ldots,$ и $\lim_{m \to \infty} z_m^{(a)} = \xi$. Другими словами, $C(f,\ \xi,\ S) = \bigcap_{\epsilon > 0} f(S \cap U_r(\xi))$, где $U_r(\xi) = \{ z \in B; \ |z-\xi| < r \}$, r > 0, и черта обозначает за-

Определим следующие множества граничных особенностей функции f: $B \to \Omega$. Положим: $C(f) = \{\xi \in \partial B; C(f, \xi, A_{\epsilon}(h_{\xi})) = C(f, \xi, B)$ для любой хорды h_{ξ} , оканчивающейся в ξ , и любого $\epsilon > 0\}$, $I(f) = \{\xi \in \partial B; C(f, \xi, A_{\epsilon}(h_{\xi})) = \Omega$ для любой хорды h_{ξ} , оканчивающейся в ξ , и любого $\epsilon > 0\}$ и $M(f) = \{\xi \in \partial B; 1)$ $C(f, \xi, h_{\xi}) = C(f, \xi, B)$ для каждой хорды h_{ξ} , оканчивающейся в ξ , и ξ 0. ξ 1.

Теорема 1. Для произвольной функции $f: B \to \Omega$ множество $\partial B - C(f) = E$ является множеством первой категории и типа F_{σ} на ∂B .

Доказательство этой теоремы проведем по схеме, предложенной для случая n=1, когда эта теорема переходит в известный результат Е.П. Долженко [8].

Фиксируем точку $\xi_0 \in \partial B$. Рассмотрим счетное множество хорд $\{h_{\xi_0}^i\}$, всюду плотное во множестве всех хорд шара B, оканчивающихся в ξ_0 . Пусть $\{\epsilon_j\}$ обозначает множество всех неотрицательных рациональных чисел. Счетное множество областей $A_{\epsilon_j}(h_{\xi_0}^i)$ обозначим $\{A^m(\xi_0)\}$. Положим $A^{m,\,q}(\xi_0) = A^m(\xi_0) \cap \{z \in \mathbb{C}^n; |z| > 1 - 1/q\}$, где q — натуральное число, и рассмотрим множество $\{A^{m,\,q}(\xi_0)\}$. Пусть $\{A^{m,\,q}(\xi)\}$ обозначает образ множества $\{A^{m,\,q}(\xi_0)\}$ при повороте шара B, переводящем точку ξ_0 в произвольную точку $\xi \in \partial B$. Поскольку метрика Бергмана инвариантна относительно биголоморфных автоморфизмов шара B, геометрические свойства множества $\{A^{m,\,q}(\xi)\}$ не зависят от выбора точки $\xi \in \partial B$.

Рассмотрим на Ω множество точек с рациональными координатами и рассмотрим множество замкнутых кругов с центрами в этих точках, радиусы которых суть рациональные положительные числа. Множество таких кругов обозначим $\{\Omega_{\nu}\}$, радиус замкнутого круга Ω_{ν} равен $r_{\nu} > 0$.

Обозначим через $E_{m,\,q,\,\nu}$ множество точек ξ на ∂B , в которых выполнены следующие два свойства:

- 1) $C(f, \xi, B) \cap \Omega_{\nu} \neq \phi$;
- 2) множество $\{a\;;\; a\;=\!\!f(z),\; z\in\!\!A^{m,\,q}(\xi)\}$ отстоит от Ω_{ν} на расстоянии, большем r_{ν} .

Из определений следует, что $E = \bigcup E_{m,\,q,\,\nu}$. Используя геометрию шара B, заключаем, что каждое из множеств $E_{m,\,q,\,\nu}$ замкнуто и нигде не плотно на ∂B .

Аналогичными рассуждениями доказывается

Теорема 2. Для произвольной функции $f: B \to \Omega$ множество I(f) имеет тип G_δ на ∂B .

2. Рассмотрим теперь голоморфные в B функции, множество которых обозначим $\mathcal{O}(B)$.

Лемма 1. Для произвольной функции $f \in \mathcal{O}(B)$ справедливо разложение $C(f) = M(f) \cup I(f)$.

Теорема 3. Для произвольной функции $f \in \mathcal{O}(B)$ имеем $\partial B = M(f) \cup I(f) \cup E$, где E — множество первой категории и типа F_{σ} на ∂B .

- Замечание 1. В случае n=1 лемма 1 и теорема 3, являющаяся уточненной формой теоремы Мейера, доказаны в работе [4] для произвольной мероморфной функции.
- 3. Доказательство леммы 1 опирается на свойства *P*-последовательностей, установленные в [6].

Напомним, что последовательность точек $\{z_m\}$ шара B называется P-п оследовательностью для функции $f \in \mathcal{O}(B)$, если:

- $\lim_{m\to\infty}|z_m|=1,$
- 2) для любого $\epsilon > 0$ и любой бесконечной подпоследовательности $\{z_k\} \subset \{z_m\}$ функция f в объединении $\bigcup\limits_k^\infty B_\epsilon(z_k)$ принимает бесконечно часто каждое комплексное значение, за возможным одним исключением.

В случае n=1 это понятие применимо также к мероморфным функциям (см., например, [2]).

Существование P-последовательностей у функции $f \in \mathcal{O}(B)$ полностью характеризуется поведением функции $q_f(z) = |\nabla f(z)|^2 (1 + |f(z)|^2)^{-2}$, где $|\nabla f(z)|$ обозначает модуль градиента функции f в точке $z \in B$ в метрике Бергмана (см. [6]). Установленные в [6] свойства P-последовательностей функции $f \in \mathcal{O}(B)$ позволяют доказать следующую лемму.

Лемма 2. Для того чтобы хорда h_{ξ} шара B, оканчивающаяся в точке $\xi \in \partial P$, не содержала P-последовательностей функции $f \in \mathcal{O}(B)$, стремящихся

 κ ξ , необходимо и достаточно, чтобы существовало такое число $\epsilon > 0$, что множество $C(q_f, \xi, A_\epsilon(h_\xi))$ ограничено.

Дополним лемму 2 следующим утверждением.

 Π е м м а 3. Предположим, что последовательности $\{z_m^1\}$ и $\{z_m^2\}$ точек из B таковы, что $\lim_{\substack{m \to \infty \\ m \to \infty}} z_m^1 = \xi$, $\xi \in \partial B$, и $\lim_{\substack{m \to \infty \\ m \to \infty}} \rho(z_m^1, z_m^2) = 0$. Если функция $f \in \mathcal{O}(B)$ имеет $\lim_{\substack{m \to \infty \\ m \to \infty}} f(z_m^1) = \alpha$ и $\lim_{\substack{m \to \infty \\ m \to \infty}} f(z_m^2) = \beta$ и $\alpha \neq \beta$, то обе последовательности являются P-последовательностями для f.

С учетом результатов из [6] утверждение леммы 3 достаточно доказать для одной из последовательностей. Рассмотрим произвольную бесконечную последовательность $\{z_k^1\}\subset\{z_m^1\}$. Ей соответствует последовательность $\{z_k^2\}\subset\{z_m^2\}$, для которой $\lim_{m\to\infty}\rho(z_k^1,\ z_k^2)=0$.

В группе $\operatorname{Aut}(B)$ биголоморфных автоморфизмов шара B выберем такие элементы $g_k \in \operatorname{Aut}(B)$, что $g_k(0) = z_k^1$, $k = 1, 2, \ldots$ Последовательность функций $\{f(g_k(z))\}$ не образует нормального в смысле Монтеля семейства ни в одной окрестности точки z = 0, поскольку в противном случае согласно [6] нашлась бы такая постоянная M > 0, что дифференциальная форма

$$\frac{i}{2} \partial \overline{\partial} (M|z|^2 - \log(1 + |f(g_k(z))|^2))$$

была бы положительно-определена на $\overline{B}_{1/2} = \{z \in \mathbb{C}^n; \{|z| \le 1/2\},$ и, следовательно, сферическое расстояние между точками из \mathbb{CP}^1 с однородными координатами $[1, f(z_k^1)]$ и $[1, f(z_k^2)]$ стремилось бы к нулю при $k \to \infty$, что противоречит условию леммы.

Поэтому в любом шаре $B_{\epsilon} = \{z \in \mathbb{C}^n; |z| < \epsilon\}$ функции семейства $\{f(g_k z)\}$ принимают в совокупности все конечные комплексные значения за возможным одним исключением [9].

Так как при отображениях g_k , $k = 1, 2, \ldots$, шар B_{ϵ} переходит в $B_{\epsilon_1}(z_k^1)$, $k = 1, 2, \ldots$, то последовательность $\{z_m^1\}$ будет P-последовательностью функции f. З а м е ч а н и е 2. В одномерном случае леммы 2 и 3 доказаны в [1, 2].

4. Доказательство леммы 1. Включение $C(f)\supset M(f)\cup I(f)$ следует из определений множеств. В произвольной точке $\xi\in C(f)$ могут существовать две возможности: (i) $C(f,\,\xi,\,B)=\Omega$ и (ii) $C(f,\,\xi,\,B)\ne\Omega$. Если реализуется возможность (i), то $\xi\in I(f)$. Если реализуется возможность (ii) и $\xi\in M(f)$, то найдется такая хорда h_ξ и такое значение $a\in\Omega$, что $a\in C(f,\,\xi,\,h_\xi)$, в то время как в каждом $A_\varepsilon(h_\xi)$ имеется последовательность точек $\{z_m^\varepsilon\}$, $\lim_{m\to\infty}z_m^\varepsilon=\xi$, по

которой $\lim_{m\to\infty} f(z_m^\epsilon) = a$. Устремляя ϵ к нулю, можно выбрать такую последовательность $\{z_m^1\}$, что $z_m^1 \to \xi$ $(m\to\infty)$, $f(z_m^1) \to a$ $(m\to\infty)$ и $\rho(z_m^1, h_\xi) \to 0$ $(m\to\infty)$. Выберем на h_ξ последовательность точек $\{z_m^2\}$ из условия $\rho(z_m^1, z_m^2) = \rho(z_m^1, h_\xi)$ при каждом фиксированном $m=1, 2, \ldots$ Тогда $f(z_m^2) \nrightarrow a$ и $\rho(z_m^1, z_m^2) \to 0$ $(m\to\infty)$. Согласно лемме 3 последовательность $\{z_m^2\}$ обязана содержать подпоследовательность, являющуюся P-последовательностью функции f. Отсюда следует, что $C(f, \xi, B) = \Omega$. Противоречие доказывает лемму 1.

5. Для функции $f \in \mathcal{O}(B)$ рассмотрим множество $P(f) = \{\xi \in \partial B;$ любая хорда h_{ξ} содержит P-последовательность функции f, стремящуюся κ $\xi\}$ и множество $I^*(f) = \{\xi \in \partial B;$ 1) ни одна из хорд h_{ξ} не содержит P-последовательностей функции f, сходящихся κ ξ , 2) $C(f, \xi, h_{\xi}) = \Omega$ для каждой хорды $h_{\xi}\}$.

Теорема 4. Пусть функция $f \in \mathcal{O}(B)$, тогда $\partial B = M(f) \cup P(f) \cup I^*(f) \cup E$, где E – множество первой категории на ∂B .

До казательство этой теоремы проведем по схеме, которая предложена в случае n=1 в работе [1]. В этом случае утверждение теоремы 4 справедливо для произвольной мероморфной функции.

Обозначим $\mathfrak{M} = C(f) \cap C(q_f)$, где $q_f(z) = |\nabla f(z)|^2 (1 + |f(z)|^2)^{-2}$. Согласно теореме 1 $\partial B = \mathfrak{M} \cup E$, где E — множество первой категории и типа F_σ . В произвольной точке $\xi \in \mathfrak{M}$ могут реализоваться следующие четыре возможности:

- (i) $C(f, \xi, B) \neq \Omega$ и $C(q_f, \xi, B)$ ограничено;
- (ii) $C(f, \xi, B) = \Omega$ и $C(q_f, \xi, B)$ не ограничено;
- (iii) $C(f, \xi, B) = \Omega$ и $C(q_f, \xi, B)$ ограничено; и
- (iv) $C(f, \xi, B) \neq \Omega$ и $C(q_f, \xi, B)$ не ограничено.

Четвертая возможность на самом деле реализоваться не может, поскольку неограниченность множества $C(q_f, \xi, B)$ влечет за собой (см. [6]) существование P-последовательности функции f, сходящейся к точке ξ , и ведет поэтому к заключению, что $C(f, \xi, B) = \Omega$.

Если реализуется возможность (ii), то согласно лемме 2, $\xi \in P(f)$. Если реализуется возможность (i) или (iii), то согласно леммам 2 и 3 $\xi \in M(f)$ или $\xi \in I^*(f)$.

- З а м е ч а н и е 2. Приведенные выше рассуждения показывают, что всеми теми свойствами, которыми функция $f \in \mathcal{O}(B)$ обладает в точках множеств M(f), $I^*(f)$ и P(f) вдоль хорд h_ξ , она обладает также вдоль произвольных жордановых кривых, лежащих в областях $A_\varepsilon(h_\xi)$, $\varepsilon > 0$, и идущих к границе.
- 6. Лемма 2 и аргументы, аналогичные тем, какие были использованы в доказательстве теоремы 1, позволяют доказать следующий результат.

Теорема 5. Для произвольной функции $f \in \mathcal{O}(B)$ множество P(f) имеет тип G_{δ} на ∂B .

В случае n=1 утверждение теоремы 5 установлено для мероморфных функций. Более того, в этом случае для произвольного множества E типа G_{δ} на единичной окружности |z|=1 существует такая мероморфная в круге |z|<1 функция f(z), что E=I(f)=P(f) (см. [3], а также [10], где доказана теорема 2 в случае n=1).

7. Все результаты настоящей статьи сформулированы и доказаны применительно к семейству некасательных граничных путей (хорд) шара B. Не представляет труда перенести их на семейства касательных граничных кривых шара B с произвольным порядком касания границы.

Московский государственный униветситет им. М.В. Ломоносова

Поступило 17 XII 1981

ЛИТЕРАТУРА

1. Гаврилов В.И. — ДАН, 1974, т. 216, № 1, с. 21—23. 2. Гаврилов В.И. — Матем. сб., 1966, т. 71, 3, с. 386—404. 3. Гаврилов В.И., Канатников А.Н. — ДАН, 1977, т. 232, № 6, с. 1237—1240. 4. Гаврилов В.И., Канатников А.Н. — ДАН, 1977, т. 233, № 1, с. 13—17. 5. Канатников А.Н. — ДАН, 1978, т. 238, № 5, с. 1043—1046. 6. Довбуш П.В. Вестн. МГУ. Сер. матем., мех., 1981, № 1, с. 38—42. 7. Довбуш П.В. — Там же, 1981, № 6, с. 34—36. 8. Долженко Е.П. — Изв. АН СССР. Сер. матем., 1967, т. 31, № 1, с. 3—14. 9. Монтель П. Нормальные семейства аналитических функций. М.—Л., 1936. 10. Lappan Р. — Bull. London Math. Soc., 1970, vol. 2, № 1, р. 60—62.